

6. Applications of Energy Storage in Power Systems

Assoc. prof. Hrvoje Pandžić

Ivan Pavić, MEE

Power System – Physical Layer

Electric power system is a network of components deployed to supply, transfer and use electric power:

- Lines
- Cables
- Transformers
- Generators
- Loads
- Secondary equipment

Main Components & Roles

- Electricity & capacity & ancillary service markets → systems enabling purchases and sales of different power related products
- Transmission and distribution → regulated roles
- Generation and consumption → market roles

Energy Storage Applications

1. System-Wide Applications

1. System-Wide Applications

- Electricity Arbitrage
- Power System
 - Adequacy
- Power System Balancing
- Flexiramp
- Footroom
 - Balance Group Balancing

Price on HUPX DAM in 2017

Price on HUPX DAM in April 2018

© Factory file Creering Hour Proxise Dy Az Mb on Dec. 12, 2017

Power System Adequacy

Capacity Remuneration Mechanisms:

- Capacity payments
- Strategic/capacity reserve
- Capacity market (auction)
- Capacity obligation
- Reliability options

UK Capacity Market

DSR New build distributed generation Storage

everoze		Capacity Market Duration-limited st Dec 2017	Capacity Market Duration-limited storage de-rating factors Dec 2017			
		Minimum duration	2021/22 T-4 de-rating factor	2018/19 T-1 de-rating factor		
Typical EFR- sized asset		0.5 hours	17.89%	21.34%		
		➡ 1 hour	36.44%	40.41%		
		1.5 hours	52.28%	55.95%		
Typical FFR- sized asset		2 hours	64.79%	68.05%		
		2.5 hours	75.47%	77.27%		
		3 hours	82.03%	82.63%		
		3.5 hours	85.74%	85.74%		
		4 hours +	96.11%	96.11%		

o ⁰⁰ o everoze	Capacity Market Prequalification Battery storage key stats Dec 2017			
000	T-4 auction (delivery in 2021/22)	T-1 auction (delivery in 2018/19)		
Battery projects applied to prequalify	6.0GW	2.3GW		
Battery projects successfully prequalified	4.7GW (78% success rate)	2.0GW (87% success rate)		
% that battery storage contributes to total prequalified capacity	5% (of 91.6GW in total)	13% (of 15.6GW in total)		
Note: Includes projects that have conditionally prequal	ified Figures for total prequalified capacit	ty may include duplicate entries		

- Primary, secondary, tertiary reserve
- Regulating power market
- Balancing market/Imbalance settlemenet
- German Reserve Market

Power System Balancing

- Primary, secondary, tertiary reserve
- Regulating power market
- Balancing market/Imbalance settlemenet
- German reserve market

- Apart from the whole system balancing, each balance responsible party (BRP) should be a member of a balancing group
- BRP every power system participant: power plants, suppliers, wholesale consumers, traders, system operators...
- Balancing group group of BRPs sending daily schedules to the TSO for power system balancing

- Demand turn up or Footroom – UK
 - true demand turn up;
 - combined heat and power (CHP);
 - any other type of generation;
 - energy storage (such as batteries); and
 - other technologies, providing they can offer the required flexibility.

□ Flexiramp – CAISO

2. Grid-Supporting Applications

2. Grid-Supporting Applications

- Congestion Management
- Grid Upgrade Deferral
- Grid Reliablity
 - Voltage and Reactive Power Support
- Black start, Island/Opencircuit operation

- Market split-up
- Redispatch measures

w

Th

т

Μ

0

s

S

Upgrade deferralLife cycle proloning

N-1 criterion

- Not obtained the <u>N-1 security criterion</u>
- Submarine cable Crikvenica-Krk out of supply
- Very high investment cost into submarine cables
- If the 110 kV line trips, the island load can only be supplied through distribution network
- It is very risky during the summer time, when load is doubled

Method for ensuring N-1 criterion

- Electrochemical storage: NaS batteries
- Energy intensive type
- Two cases:
 - Mini BES one block: 1.2 MW, 8.6 MWh
 - Maxi BES seven blocks: 8.4 MW, 60 MWh
- Mini BES can protect against short interruptions/outages of 110 kW line Krk–Lošinj during low demand
- Maxi BES contains sufficient capacity for longer transmission line down time and can provide energy for higher load levels

- Assumption of value of lost load to be 10,000 €/MWh
- Base case:
 - Unserved load cost during the period 2011–2017: 3.1 M€
- □ Savings:
 - Maxi BES **2.37 M€**
 - Mini BES **0.51 M€**
- □ Investment:
 - New line 17.77 M€
 - NaS batteries:
 - □ Mini BES 3.88 M€
 - □ Maxi BES 27.21 M€

	SAIDI (min)					
Year	Base case	Maxi ESS	Mini ESS			
2011	3	0	0			
2012	1,209	537	1,159			
2013	7	0	0			
2014	115	0	0			
2015	0	0	0			
2016	0	0	0			
2017	215	0	190			
Overall	1,434	537	1,349			

SAIDI INDICES

□ Total unserved load 2011-2017

- An isolated part of the Croatian power system
- Total installed power generation capacity in Istria is 300 MW
- Increasing of load up to 230 MW, especially during the summer season
- All simulations performed in the PSSE software

Production: TE Plomin
 TEP 1 (max 105 MW)
 TEP 2 (max 210 MW)
 Scenarios:

 Line 2x220 kV:
 Plomin-TS Pehlin-TS Melina - MAIN
 Line 110 kV
 Buje-Kopar – AUXILIARY 1

Line 110 kV

Plomin-TS Lovran-TS Matulji-TS Pehlin - AUXILIARY 2

 $G_1 \xrightarrow{1_1} F_1 \xrightarrow{F_1} G_2$ $G_1 \xrightarrow{I_2} F_2 \xrightarrow{I_2} Ioad$

Two cases:

- Injection of power
- Evacuation of power
- □ Generator G1 less expensive
- When the contingency has occurred, power flow through line l2 increases to the line's short-term rating
- ES starts to inject power until t2, while the generators units start ramping
- □ After t3 power flow through line reach€
- Its long-term rating

- Conventional way:
 - Reactive elements
 - Dynamic compensators
 - FACTS:
 - □ SVC
 - □ STATCOM

New way:STATCOM-ES

- Black start
- Island operation
- Open-circuit operation

3. User-Supporting Applications

- New Connection
 - **Demand Management**
- Operation-wise Demand Management
- Retail Arbitrage
 - Power Supply (Voltage) Quality
- Power Supply Reliability (Back-up)

Consumers				Tariff elements					
		<u>.</u>		Real Energy		DUIDUI	Excessive	Measuring	
		ni modi		One T	High T	Low T	Power	reactive power	point charge
		urifr		[kn/kWh]	[kn/kWh]	[kn/kWh]	[kn/kW]	[kn/kvarh]	[kn/mo]
		Ĕ	Tariff items						
				1	2	3	4	5	6
Economy consumers	High voltage	White	1	-	-	-	-	-	-
	Middle voltage	White	2	-	0,12	0,06	15,00	0,15	66,00
	Low voltage	Blue	3	0,22	-	-	-	0,15	41,30
		White	4	-	0,24	0,12	-	0,15	41,30
		Red	5	-	0,20	0,10	30,00	0,15	41,30
		Yellow	6	0,17	-	-	-	-	14,70
Houshold s	Low voltage	Blue	7	0,22	-	-	-	-	10,00
		White	8	-	0,24	0,12	-	-	10,00
		Red	9	-	0,20	0,10	30,00	-	41,30
		Black	10	0,13	-	-	-	-	5,80

□ Highest 15-min demand in peak periods

- Electricity prices
- □ Real energy tariffs

Power Supply (Voltage) Quality

Sensitive loads

- Variations in voltage magnitude (e.g., short-term spikes or dips, longer term surges, or sags).
- Variations in the primary 50-hertz (Hz) frequency at which power is delivered.
- Low power factor (voltage and current excessively out of phase with each other).
- Harmonics (i.e., the presence of currents or voltages at frequencies other than the primary frequency).
- Interruptions in service, of any duration, ranging from a fraction of a second to several seconds.

